metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhong-Lu You,^{a,b} Hai-Liang Zhu^{a,b}* and Wei-Sheng Liu^b

^aDepartment of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, and ^bDepartment of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.042 wR factor = 0.096 Data-to-parameter ratio = 10.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[*N*,*N*'-Bis(2-hydroxynaphthylmethylene)-1,3-propanediaminato]cobalt(II)

The title compound, $[Co(C_{25}H_{20}N_2O_2)]$, is mononuclear. The molecule has crystallographic mirror symmetry. The Co^{II} atom is coordinated by two N atoms and two O atoms from a bis-Schiff base ligand in a slightly distorted square-planar geometry.

Comment

Recently, we have reported a few Schiff base complexes (You, Lin *et al.*, 2003; You, Qu *et al.*, 2003; You, Xiong *et al.*, 2004; You, Zhu & Liu, 2004). As an extension of our work on the structural characterization of Schiff base complexes, a mononuclear cobalt(II) complex is reported here.

The title compound, (I), is an electronically neutral mononuclear cobalt(II) compound (Fig. 1). The molecule of (I) possesses mirror symmetry, with atoms Co1 and C13 lying on the crystallographic mirror plane. The central Co atom in the compound is four-coordinated by two O atoms and by two N atoms from the bis-Schiff base ligand. This CoO_2N_2 coordination forms a slightly distorted square-planar geometry, as usually observed in the structures of cobalt(II) complexes (Lyon *et al.*, 1998). The Co atom is 0.0015 (3) Å out of the plane defined by the four donor atoms in the complex. The Co-O(phenolate) bond lengths of 1.846 (3) Å (Table 1) are comparable to the corresponding value of 1.846 (2) Å observed in a similar Schiff base cobalt(II) complex (Lyon *et al.*, 1998). The Co-N(imine) bond distances of 1.852 (3) Å

Figure 1

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms with the suffix A are related by the mirror symmetry (1 - x, y, z).

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

m654 You, Zhu and Liu • [Co(C₂₅H₂₀N₂O₂)]

Received 16 April 2004 Accepted 20 April 2004

Online 24 April 2004

Figure 2

The crystal packing of (I), viewed along the c axis.

are also comparable to the value of 1.850 (2) Å observed in the same complex. Both the *trans* angles in the CoN_2O_2 square plane are 173.78 (14)°, indicating a slightly distorted square planar geometry of Co1. There is an overall butterfly shape to the molecule, as evidenced by a dihedral angle of 52.7 (5)° between the two naphthalene ring systems of the complex. The dihedral angle between the CoN_2O_2 square plane and the naphthalene ring system is 28.6 (3)°. The conformation of the six-membered ring containing the metal, azomethine N atoms and three C atoms of the connecting 1,3-diaminopropane is a symmetric boat. The distances of the two *para*-positioned boat atoms, Co1 and C13, from the mean plane of the other four atoms are 0.523 (3) and 0.599 (3) Å, respectively.

Experimental

All chemicals (reagent grade) used were commercially available. 2-Hydroxy-1-naphthaldehyde (0.2 mmol, 34.4 mg) and 1,3-diaminopropane (0.1 mmol, 7.4 mg) were dissolved in MeOH (10 ml). The mixture was stirred for 1 h to give a clear yellow solution of L(0.2 mmol), where L is N,N'-bis(2-hydroxynaphthylmethylene)-1,3propanediamine. To the solution of L was added a MeOH solution (8 ml) of Co(CH₃COO)₂·4H₂O with stirring. After keeping the resulting solution at room temperature in air for 13 d, brown crystals were formed at the bottom of the vessel on slow evaporation of the solvent. The crystals were isolated, washed three times with MeOH and dried in a vacuum desiccator using anhydrous CaCl₂ (yield 68.3%). Analysis found: C 68.32, H 4.66, N 6.45%; calculated for $C_{25}H_{20}CoN_2O_2$: C 68.34, H 4.59, N 6.38%. Selected IR data (cm⁻¹): 3432 (w), 1613 (s), 1288 (s), 540 (m), 479 (m).

Crystal data

$\begin{bmatrix} Co(C_{25}H_{20}N_2O_2) \end{bmatrix} \\ M_r = 439.36 \\ Orthorhombic, Cmc2_1 \\ a = 30.554 (6) Å \\ b = 8.4240 (17) Å \\ c = 7.7270 (15) Å \\ V = 1988.8 (7) Å^3 \\ Z = 4 \\ D_x = 1.467 \text{ Mg m}^{-3} \\ Dete action \\$	Mo $K\alpha$ radiation Cell parameters from 2312 reflections $\theta = 2.5-25.2^{\circ}$ $\mu = 0.89 \text{ mm}^{-1}$ T = 293 (2) K Block, red $0.23 \times 0.20 \times 0.17 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.822, T_{max} = 0.864$ 3825 measured reflections	1414 independent reflections 1192 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 27.0^{\circ}$ $h = -37 \rightarrow 38$ $k = -10 \rightarrow 10$ $l = -9 \rightarrow 5$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.096$ S = 1.00 1414 reflections 139 parameters H-atom parameters constrained	$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0534P)^2] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{\rm max} < 0.001 \\ &\Delta\rho_{\rm max} = 0.48 \ {\rm e} \ {\rm A}^{-3} \\ &\Delta\rho_{\rm min} = -0.21 \ {\rm e} \ {\rm A}^{-3} \\ &{\rm Absolute\ structure:\ Flack\ (1983),} \\ &250\ {\rm Friedel\ pairs} \\ &{\rm Flack\ parameter\ = 0.39\ (3)} \end{split}$

Table 1

Selected geometric parameters (Å, °).

Co1-O1	1.846 (3)	Co1-N1	1.852 (3)
O1 ⁱ -Co1-O1	82.30 (18)	O1-Co1-N1	91.48 (14)
O1-Co1-N1 ⁱ	173.78 (14)	N1 ⁱ -Co1-N1	94.7 (2)

Symmetry code: (i) 1 - x, y, z.

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C-H distances in the range 0.93–0.97 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$. The Flack parameter is 0.39(3), which indicates a partial inversion twin.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1996); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 2004kj300zd.

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lyon, D. K., Miller, B. E., Miller, W. K., Tyler D. R. & Weakley, T. J. R. (1998). Acta Cryst. C54, 20–22.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.

- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- You, Z.-L., Lin, Y.-S., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2003). Acta Cryst. E59, m1025–m1027.
- You, Z.-L., Qu, Y., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2003). Acta Cryst. E59, m1038–m1040.
- You, Z.-L., Xiong, Z.-D., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m79–m81.
- You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m560m562.